The Avrunin–Scott theorem for quantum complete intersections
نویسندگان
چکیده
منابع مشابه
The Avrunin-scott Theorem for Quantum Complete Intersections
We prove the Avrunin-Scott theorem for quantum complete intersections; the rank variety of a module is isomorphic to its support variety.
متن کاملA mirror theorem for toric complete intersections
We prove a generalized mirror conjecture for non-negative complete intersections in symplectic toric manifolds. Namely, we express solutions of the PDE system describing quantum cohomology of such a manifold in terms of suitable hypergeometric functions. 0. Introduction. Let X denote a non-singular compact Kähler toric variety with the Picard number k. The variety X can be obtained by the sympl...
متن کاملThe Representation Dimension of Quantum Complete Intersections
We give a lower and an upper bound for the representation dimension of a quantum complete intersection.
متن کاملExt-SYMMETRY OVER QUANTUM COMPLETE INTERSECTIONS
We show that symmetry in the vanishing of cohomology holds for graded modules over quantum complete intersections. Moreover, symmetry holds for all modules if the algebra is symmetric.
متن کامل(co)homology of Quantum Complete Intersections
We construct a minimal projective bimodule resolution for every finite dimensional quantum complete intersection of codimension two. Then we use this resolution to compute both the Hochschild cohomology and homology for such an algebra. In particular, we show that the cohomology vanishes in high degrees, while the homology is always nonzero.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2009
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2008.12.019